Wednesday 6 November 2013

Iman dan takwa

Kita perlu kuatkan iman sepanjang masa supaya Allah sentiasa menjaga maruah seseorang. Nilai takwa adalah perkara utama perlu dititikberatkn untuk ke arah jln yang benar disisi Allah S.W.T. ^_^

Monday 13 August 2012

Computer Hardware


History of computing hardware

From Wikipedia, the free encyclopedia

Computing hardware is a platform for information processing (block diagram)

History of computing
Hardware
Computer science
Modern concepts
Timeline of computing
More...

Computing hardware evolved from machines that needed separate manual action to perform each arithmetic operation, to punched card machines, and then to stored-program computers. The history of stored-program computers relates first to computer architecture, that is, the organization of the units to perform input and output, to store data and to operate as an integrated mechanism.

Before the development of the general-purpose computer, most calculations were done by humans. Mechanical tools to help humans with digital calculations were then called "calculating machines", by proprietary names, or even as they are now, calculators. It was those humans who used the machines who were then called computers. Aside from written numerals, the first aids to computation were purely mechanical devices which required the operator to set up the initial values of an elementary arithmetic operation, then manipulate the device to obtain the result. A sophisticated (and comparatively recent) example is the slide rule in which numbers are represented as lengths on a logarithmic scale and computation is performed by setting a cursor and aligning sliding scales, thus adding those lengths. Numbers could be represented in a continuous "analog" form, for instance a voltage or some other physical property was set to be proportional to the number. Analog computers, like those designed and built by Vannevar Bush before World War II were of this type. Numbers could be represented in the form of digits, automatically manipulated by a mechanical mechanism. Although this last approach required more complex mechanisms in many cases, it made for greater precision of results.

The invention of electronic amplifiers made calculating machines much faster than their mechanical or electromechanical predecessors. Vacuum tube (thermionic valve) amplifiers gave way to solid state transistors, and then rapidly to integrated circuits which continue to improve, placing millions of electrical switches (typically transistors) on a single elaborately manufactured piece of semi-conductor the size of a fingernail. By defeating the tyranny of numbers, integrated circuits made high-speed and low-cost digital computers a widespread commodity. There is an ongoing effort to make computer hardware faster, cheaper, and capable of storing more data.

Computing hardware has become a platform for uses other than mere computation, such as process automation, electronic communications, equipment control, entertainment, education, etc. Each field in turn has imposed its own requirements on the hardware, which has evolved in response to those requirements, such as the role of the touch screen to create a more intuitive and natural user interface.

As all computers rely on digital storage, and tend to be limited by the size and speed of memory, the history of computer data storage is tied to the development of computers.

Sunday 12 August 2012

Fifth generation computer
From Wikipedia, the free encyclopedia
The Fifth Generation Computer Systems project (FGCS) was an initiative by Japan's Ministry of International Trade and Industry, begun in 1982, to create a "fifth generation computer" (see History of computing hardware) which was supposed to perform much calculation using massive parallel processing. It was to be the result of a massive government/industry research project in Japan during the 1980s. It aimed to create an "epoch-making computer" with supercomputer-like performance and to provide a platform for future developments in artificial intelligence.[1]
The term fifth generation was intended to convey the system as being a leap beyond existing machines. Computers using vacuum tubes were called the first generation; transistors and diodes, the second; integrated circuits, the third; and those using microprocessors, the fourth. Whereas previous computer generations had focused on increasing the number of logic elements in a single CPU, the fifth generation, it was widely believed at the time, would instead turn to massive numbers of CPUs for added performance.[2] The project was to create the computer over a ten year period, after which it was considered ended and investment in a new, Sixth Generation project, began. Opinions about its outcome are divided: Either it was a failure, or it was ahead of its time.